Pumped Storage Project Considerations
Alden Webinar Series
January 29, 2013

Please make sure your computer speakers are on with the volume up. You should hear the conversation, or light “on hold” music before the webinar begins. Alternatively, use your phone to dial 1 (866) 809-5996, participant code 6504656.
Housekeeping

• Questions and Audio
• Availability of slides and recording
• Q&A period

Please make sure your computer speakers are on with the volume up. You should hear the conversation, or light “on hold” music before the webinar begins. Alternatively, use your phone to dial 1 (866) 809-5996, participant code 6504656
Agenda

- Introduction: Pumped Storage and Renewable Energy (Ron Grady, HDR)
- Generating Equipment (Dr. Juliusz Kirejczyk, HDR)
- The Licensing Process (Pat Weslowski, Louis Berger)
- Pumped Storage Hydraulics (Andy Johansson, Alden)
- Fish Protection Considerations (Steve Amaral, Alden)

Please make sure your computer speakers are on with the volume up. You should hear the conversation, or light “on hold” music before the webinar begins. Alternatively, use your phone to dial 1 (866) 809-5996, participant code 6504656
Pumped Storage and Renewable Energy Integration = Strategic Flexibility

Ron Grady, P.E.

Please make sure your computer speakers are on with the volume up. You should hear the conversation, or light “on hold” music before the webinar begins. Alternatively, use your phone to dial 1 (866) 809-5996, participant code 6504656
The Challenge: Balancing Transmission System Operations

• Maintain system reliability by continuously balancing supply and demand
• Follow the short-, medium-, and long-term variation in load with a fleet of flexible and dispatchable resources
• Call on operating reserves to accommodate large net load ramping events
Grid-Scale Energy Storage Solutions

- Grid-scale storage enables development of double-digit levels of wind penetration
- Europe integrates variable energy with big transmission, conventional hydro, and carbon-free pumped storage
- Changing US market for system reserves and grid reliability services
Wind Integration

As variable energy resources increase, grid operators have become increasingly concerned about their ability to maintain system stability.

- Wind generation can change suddenly, increasing the balancing requirements of dispatchable resources
- Wind peak generation often occurs during off-peak periods, reducing its energy value by not supporting peak loads
- Low load and/or transmission congestion can lead to wind output curtailments

NERC: “Net load in the future will result in a need for greater system flexibility.”

Courtesy of Bonneville Power Administration & Puget Sound Energy
Denmark and Grid Reliability

- 30% wind penetration in the generation mix
- No native load balancing
- Balancing services provided via interconnects:
 - Strong interconnections with Norway, Sweden, and Germany
 - Utilizes energy storage and flexible energy options in neighboring balancing areas
 - Excess wind is exported and stored in Norwegian hydropower reservoirs
Western Denmark
Wind Output and Net Electricity Flows

January 2007
MWh/h

Source: Energinet.dk (Denmark's system operator)
Load and Wind on BPA System

December 24-31, 2007 (Total Installed Wind of 1,300 MW)

BPA Balancing Authority Load & Total Wind Generation, Last 7 days

Installed Wind Capacity (1,300 MW)

Actual Wind Generation

Winter Peak Load December 27, 2007

Based on 5-min readings from the BPA SCADA system for points 45583, 79687
Balancing Authority Load in Red, Wind Generation in Blue
BPA Technical Operations: Roy Ellis (rcellis@bpa.gov)

Courtesy of Bonneville Power Administration
Why Energy Storage?

- Attenuates generation volatility and physical availability
- Aligns peak generation to peak loads
- Reduces imbalance due to scheduling challenges
- Moderates transmission congestion and improves system reliability
- Enables further penetration of variable generating resources
Bulk and Distributed Energy Storage Technologies

System Ratings
Installed systems as of November 2008

Storage System Ratings
Real-Time Operations Scale

ALDEN
Solving Flow Problems Since 1894
Pumped Storage is the Best Partner

Hydro pumped storage balances variable generation, turning *celebrity* into *certainty*
Hydroelectric Pumped Storage

• What is it?
 – An efficient means to store energy when the demand for power is low and to generate power with the stored energy when the demand is high.

• How does it work?
 – Water is stored in an upper and lower reservoir.
 – During periods of low power demand, water is pumped from the lower reservoir to the upper reservoir.
 – During high demand periods, water from the upper reservoir is released through turbines to the lower reservoir, generating power.

More importantly: Pumped storage is a system operations/transmission tool.
Alternative Project Profiles

NOTE: CHOICE OF UPPER INTAKE DEPENDS ON UPPER RESERVOIR CONFIGURATION.

Courtesy Electric Power Research Institute
Definition Sketch of Project Profiles

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D, E, F</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

Courtesy Electric Power Research Institute
Pump-Turbines: Three Modes of Operation

- Normal Generation
- Pumping Operation
- Synchronous Condensing (Spinning in air)
Pumped Storage Development Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Approx. Duration</th>
<th>Schedule (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconnaissance Study</td>
<td>2 to 3 Months</td>
<td></td>
</tr>
<tr>
<td>Prefeasibility Study</td>
<td>4 to 8 Months</td>
<td></td>
</tr>
<tr>
<td>Feasibility Study & Concept Design</td>
<td>10 to 15 Months</td>
<td></td>
</tr>
<tr>
<td>Initial Design & Tender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Site Characterization</td>
<td>3 to 4 Years</td>
<td></td>
</tr>
<tr>
<td>Major PH Equipment Selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Design Phase & Spec Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Tender Process (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Design & Engr Support (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Phase (ILP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Application Activities (3)</td>
<td>As Req’d</td>
<td></td>
</tr>
<tr>
<td>File NOI & PAD</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>Scoping / Process Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Plan Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies & Application Dev</td>
<td>1 - 2 Years</td>
<td></td>
</tr>
<tr>
<td>Post Filing Activities</td>
<td>1.5 Years</td>
<td></td>
</tr>
<tr>
<td>License Order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>5 to 6 Years</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Assumes construction bid documents are released in advance of final design.
2. Assumes engineering continues through tendering process as well as construction.
3. Pre-Application activities could be advanced depending on the owner's appetite for risk prior to completion of the feasibility study.
Considerations for Evaluating Pumped Storage Project Potential

- Favorable market conditions
- Favorable geology and seismology
- Favorable environmental and regulatory setting
- Favorable topography maximizing operating head, minimizing water conductor length relationship and suitable for embankment construction
- Unit operating range
- Unit submergence
- Available existing infrastructure (roads, transmission, etc.)
- Closed loop vs. open loop and adequate available water source
- Available construction materials
- Adequate overburden above tunnels
Equipment and Layout Considerations

- Underground vs. shoreline powerhouse
- Operational objectives and desired performance
- Selection of unit type (single speed vs. variable speed)
- Selection of number of units
- Unit speed optimization
- Transient analysis
- Powerhouse sizing considerations
Operational Characteristics

• Standstill to full generation usually in less than 3 minutes
• From 100% pumping to 100% generation usually in less than 6 to 10 minutes
• From 100% generation to 100% pumping in approximately 6 to 10 minutes
• Load following capabilities (in generation mode) that can respond in seconds
• Pump load is relatively fixed due to synchronous motor – step function changes (single speed machines)
• Variable speed technologies are available and offer significantly greater benefit at a incrementally higher cost
Advantages of Single Speed and Variable Speed Pumped Storage Units

<table>
<thead>
<tr>
<th>Single Speed Pump-Turbine</th>
<th>Variable Speed Pump-Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lower equipment cost by ~30%</td>
<td>• Wider head range operation</td>
</tr>
<tr>
<td>• Smaller powerhouse size</td>
<td>• Flatter and higher generating performance curve</td>
</tr>
<tr>
<td>• Slightly lower O&M costs</td>
<td>• Regulation in pumping</td>
</tr>
<tr>
<td></td>
<td>• Wider generating operating range</td>
</tr>
</tbody>
</table>
Generating Equipment

Juliusz Kirejczyk

HDR
Overview

• Generating equipment currently in operation represents technical level of the 1960’s and 1970’s

• Recent advances
 – Draw on accumulated experience
 – Profit from computational design methods
 – Offer the possibility of variable speed operation
Why Variable Speed?

(+) Economically attractive way of controlling grid frequency
 • Long time scale (minutes, hours) by regulation of pumping power
 • Short time scale (seconds) by using inertia of rotating parts as energy storage

(-) Higher equipment cost (about 30%)
Power Regulation

Pumping

- Range of regulation
 60% to 100%

Variable Speed

Constant Speed

Diagram showing the range of regulation from 60% to 100% for both constant and variable speed pumping.
Power Regulation
Generating

Higher efficiency

Wider operating range

[Graph showing efficiency and generating head with constant and variable speed operations]

ALDEN
Solving Flow Problems Since 1894
Variable Speed Equipment

• Pump-turbines – the same as for constant speed
• Electrical part – addition of AC excitation with frequency converter
 – Converter capacity:
 about 10% of motor-generator rating
 – Typical range of speed variation:
 ± 4% to ±8%
Experience with Variable Speed Pumped Storage Equipment

• Over 20 years of reliable operation
• Several dozens of units in service worldwide
 – Maximum capacity 395 MVA
• About one dozen units currently in construction
 – Maximum capacity 475 MVA
Available options:

• Single speed
 – Time-proven method
 – Lower cost

• Variable speed
 – Possibility of balancing effects of large-scale wind and solar generation
The Licensing Process

Pat Weslowski

The Louis Berger Group
The Challenge: Obtaining a License from The Federal Energy Regulatory Commission (FERC)

- Overview of regulatory process
- Strategic decisions
- Stakeholder consultation
- Steps to help manage timeframes and costs

Copies of the regulations at 18 CFR Part 4 and 5 and flow charts for the Integrated, Traditional, and Alternative Licensing Processes are available at FERC.gov/industries/hydropower
The Challenge: Overview of Regulatory Process – Pre-filing Steps

• Preliminary Permit Stage (3 years)
 – Assessing the feasibility
 – Agency/Stakeholder consultation
 – Preparing the Pre-Application Document (PAD) and Notice of Intent (NOI)

• Successive Permits (3 more years)
 – Adequacy of progress reports (actually making progress is important)
 – Meeting filing deadlines
The Challenge: Overview of Regulatory Process – Pre-filing Steps

• Pre-Application Document (PAD)
 – Readily available existing information (baseline)
 – Strategic studies to augment existing information
 – Decision of whether to include study plans in PAD
 – Stakeholder meetings
 – Strategic decision on which process to use; however assume new pumped storage facilities will use the default Integrated Licensing Process (ILP).
Processes for Hydropower Licenses

Integrated Licensing Process (ILP)
5.5 years before expiration for relicense

Pre-Application Activity

- Applicant files NOI and Pre-Application Document
 Applicant may request use of TLP or ALP
 \(\text{Sections 5.5, 5.5.5, 5.6}\)

- Comments on use of TLP or ALP, if requested
 \(\text{Section 5.3}\)

- Initial Tribal Consultation Meeting
 \(\text{Section 5.7}\)

- Commission notices NOI/PAD and issues Scoping Document 1 (SD1)
 Commission acts on TLP or ALP requests
 \(\text{Section 5.8}\)

- Commission holds scoping Meetings/Site Visit
 Discuss issues, mgmt obj, existing info, info needs, process plan, and schedule
 \(\text{Section 5.8}\)

- Comments on PAD, SD1 and Study Requests
 \(\text{Section 5.9}\)

- Applicant Files Proposed Study Plan
 \(\text{Sections 5.11, 5.10}\)

- Study Plan Meetings(s) (informal resolution of study issues)
 \(\text{Section 5.11}\)

- Comments on Proposed Study Plan
 \(\text{Section 5.12}\)

- Applicant files revised Study Plan for Commission approval
 File reply comments within 15 days
 \(\text{Section 5.13}\)

- Commission issues Study Plan Determination
 \(\text{Section 5.13}\)

- No Disputes
 \(\text{Section 20}\)

- Mandatory conditioning agencies file notice of study disputes
 \(\text{Sections 5.14, 5.14}\)

- Determination on Study Dispute
 \(\text{Section 5.14}\)

- First season studies and Study Review:
 1) Applicant files initial study report 2) Study meeting 3) Requests for study plan modification
 \(\text{Section 5.15}\)

- Second season studies, if needed, and Study Review (same as first season)
 \(\text{Section 5.15}\)

- Applicant’s Preliminary Licensing Proposal
 (not later than 150 days before application)
 \(\text{Section 5.36}\)

- Comments on Applicant’s Preliminary Licensing Proposal
 Additional Information Requests, if needed
 \(\text{Section 5.36}\)
The Challenge: Overview of Regulatory Process – Pre-filing Steps (assumes ILP)

- FERC issues scoping document
- FERC conducts scoping meetings and site visit
- FERC comments on PAD, scoping documents and study requests
- Applicant Prepares Proposed Study Plan and Revised Study Plan
- FERC issues Study Plan Determination
- Applicant Field Studies
The Challenge: Overview of Regulatory Process – Pre-filing Steps (assumes ILP)

• Preliminary Licensing Proposal
 – Preparation of Exhibits A, B, C, D, E
 • A - Project Description
 • B – Project Operations
 • C – Project Construction Schedule
 • D – Project Costs
 • E – Environmental Report
 • F - Drawings and Plans
 • G – Project Boundary and Land Ownership
 – Agency/Stakeholder consultation
The Challenge: Overview of Regulatory Process – Post-filing Steps (assumes ILP)

- Final License Application (tendering notice)
- FERC conducts an adequacy review
- FERC issues deficiency and/or additional information requests
- FERC issues acceptance notice
- FERC issues Ready for Environmental Analysis notice
- FERC prepared draft/final National Environment Policy Act (NEPA) documents
The Challenge: Overview of Regulatory Process – Post-filing Steps (for all processes)

• FERC issues license – but not until
 – A Water Quality Certification has been issued
 – Endangered Species Act (ESA) consultation is completed and biological opinion has been issued
 – A Programmatic Agreement with the State Historic Preservation Officer as been signed (if there are historic properties)
The Challenge: Strategic Decisions

- Which process to use
 - Given the complexity of pumped storage one would assume the ILP
- To do studies for the PAD
 - When there are obvious information that stakeholders want
- To include study plans in the PAD
- The degree of candor in the filings – how much information about operations to provide.
The Challenge: Stakeholder Consultation

- Needs to reflect due diligences in identifying stakeholders and tribes
- Needs to present real opportunities to review and comment
- Needs to adhere to the rigid timeframes in the ILP
The Challenge: Steps to Help Manage Timeframes and Costs

• Consult early and often with both FERC and stakeholders
• Consider the appropriate seasons for protocols and other studies
• Use FERC’s Environmental Assessment/Environmental Impact Statement guidance documents
• Strive for internal consistency between study reports and license applications
• Be thorough to avoid time consuming Additional Information Requests (AIRs).
Pumped-Storage Hydraulics

Andy Johansson

Alden
Pumped-Storage Hydraulics

• Where?
 – Lower Reservoir/Supply
 – Upper Reservoir
 – Pump Turbines
 – Penstock

• Why?
 – New Facility
 – Site changes over time
 – Increased capacity
 – Changes in expected water levels
Pumped-Storage Hydraulics

• Tools:
 – Accurate Physical and Computational Fluid Dynamics (CFD) Modeling
 • Confirm Performance of Pump Turbines
 • Provide information on how changes will impact hydraulics
 • Develop modifications to mitigate long term operational and maintenance concerns
 – Modeling Options
 • Computational Fluid Dynamics (CFD) Models
 – Cost and Schedule advantages
 – More information typically available
 • Physical Models
 – Able to predict phenomena CFD is not capable of simulating
 » Vortex Activity
Pumped-Storage Hydraulics

- Hydraulic Phenomena of Interest:
 - Vortex Formation (Lower and Upper Reservoirs)

Free Surface Vortex Classification
Pumped-Storage Hydraulics

- Hydraulic Phenomena of Interest:
 - Vortex Formation (Lower and Upper Reservoirs)

 - Adverse Vortex activity can result in unacceptable hydraulics and air entrainment impacting flow, head, power, cavitation, increased vibration and noise.
Pumped-Storage Hydraulics

• Hydraulic Phenomena of Interest:
 – Velocity Distribution and Swirl (at the pump/turbines)

\[
\theta = \tan^{-1} \frac{V_t}{U} = \tan^{-1} \frac{\pi n d}{U}
\]

where:

- \(d\) = diameter of pipe at swirl meter {ft}
- \(n\) = revolutions of swirl meter {revolutions / second}
- \(Q\) = flow {ft\(^3\)/s}
- \(U\) = average axial velocity {ft/s}
- \(V_t\) = tangential velocity near pipe wall {ft/s}
Pumped-Storage Hydraulics

• Hydraulic Phenomena of Interest:
 – Velocity Distribution and Swirl (at the pump/turbines)

– Velocity Non-uniformity and swirl can change performance characteristics and cause uneven loading of rotating elements
Pumped-Storage Hydraulics

- Hydraulic Phenomena of Interest:
 - Headloss (Civil Structures)

 – Increased Headloss can impact efficiency
Pumped-Storage Hydraulics

• Hydraulic Phenomena of Interest:
 – Scour, Sedimentation and Debris (Lower and Upper Reservoirs)
 – Adverse Scour, Sedimentation and Debris can impact O&M cost and safety
Pumped-Storage Hydraulics

• Conclusions:
 – Accurate hydraulic model studies can be very useful tools to evaluate hydraulic phenomena at pumped-storage facilities.
 • Physical Models
 • Numeric Models
 • Combined Physical/Numeric Modeling Approaches
 – Can be used to provide information on how changes will impact hydraulics
 • Changes that have occurred over time
 • Operational Changes (Increased flow capacity, water levels)
 – Can be used to develop modifications to mitigate long term operational and maintenance concerns
Fish Protection Considerations

Steve Amaral
Alden
Issue

• Fish in the vicinity of upper and lower reservoir intakes may be entrained through turbines or impinged on trash racks

• Risk of entrainment and impingement will depend on:
 – Project design and operation
 – Environmental and hydraulic conditions
 – Biological factors (species, size, movement patterns)

• Potential impacts resulting from entrainment and impingement will depend on:
 – Magnitude of losses or other effects (e.g., migration delays)
 – Existing population levels (i.e., depressed or healthy)
 – Life history strategy and biology of species of interest (i.e., resident species vs. diadromous)

• Mitigation through fish protection systems or modified project operation
Entrainment and Impingement Risk

- Type of water body used for upper and lower reservoirs (rivers, natural lakes, man-made reservoirs)
- Intake location and design (depth, bar rack spacing)
- Intake approach velocities and hydraulic zone of influence
- Water temperature, turbidity, and other environmental conditions that may influence fish behavior and ability to avoid entrainment and/or impingement
- Fish size and swimming capabilities
- Diel activity and migration behaviors
Potential Impacts

- Transfer of fish from one reservoir to another
- Loss of fish due to turbine/pump mortality
- Mortality from impingement on bar racks (as influenced by approach velocities and bar rack spacings)
- Migration delays in rivers due to changes in hydraulic conditions and entrainment
Mitigation Alternatives and Effectiveness Studies

- Fish protection systems designed to reduce entrainment and impingement
 - Narrow-spaced bar racks, screening systems
 - Barrier nets
 - Behavioral deterrents (sound, strobe lights, air bubble curtains)

- Modified project operation
 - Reduced pumping at night
 - Reduced generation during day

- Multi-year performance monitoring and protection system modifications
Northfield Mountain

- Upper reservoir: man-made (no public access)
- Lower reservoir: Connecticut River (Turners Falls impoundment)
- Units: 4 reversible pump/turbines with combined 1119 MW generating capacity
- Head range: 753 – 825 ft
- Flow capacity: 15,200 cfs pumping; 20,000 cfs generating

- Primary fish issue: Entrainment of Atlantic salmon smolts during pumpback operations
- Fish protection measures: seasonal guide net (April 1 – June 15, until 2015), 650 ft long with ¾ square mesh; pumping limited to three units or less
- Effectiveness: 93.3% guidance of tagged smolts (NUSCO 1999); some impingement reported for non-tagged smolts
Ludington

- Upper reservoir: man-made
- Lower reservoir: Lake Michigan
- Units: 6 Francis reversible pump/turbines with combined generating capacity of 1,872 MW
- Head range: 290 – 370 ft
- Flow capacity: 66,600 cfs pumping; 76,000 cfs

- Primary fish issue(s): Entrainment and mortality of Lake Michigan fish (primarily alewife, yellow perch, and salmonids) during pumpback operations

- Fish protection measures: 2.5-mile long seasonal barrier net (April – October); 19-mm bar mesh on offshore panels and 12.7 mm bar mesh on inshore panels

- Effectiveness: 62 to 100% for fish > 5 inches in length (1996 data); 95.7% for all target species combined (Reider et al. 1997)
Richard B. Russell

- Upper reservoir: Richard B. Russell Lake
- Lower reservoir: J. Strom Thurmond Lake
- Units: 4 conventional turbines (combined 328 MW capacity) and 4 reversible pump/turbines (combined 320 MW capacity)
- Head range: 136 to 166 ft
- Flow capacity: 30,000 cfs pumping; 60,000 cfs generating

- Primary fish issue(s): Entrainment of lower reservoir fish during pumpback operations; species of primary interest include blueback herring, threadfin shad, gizzard shad, striped bass, white bass, hybrid bass, walleye, sauger, and yellow perch
- Fish protection measures: Ultrasonic sound deterrent system (blueback herring); overhead lighting along shorelines to attract fish away from intake; intake screening overlays (2 inches on center); rock berm to improve hydraulic conditions (reduce fish attraction); pumping restrictions during specified seasonal periods; no daytime pumping
- Effectiveness: Reductions in entrainment rates were observed after all of the fish protection measures were implemented (Nestler et al. 1999)
Muddy Run

- Upper reservoir: man-made
- Lower reservoir: Susquehanna River (Conowingo Impoundment)
- Units: 8 Francis reversible pump/turbines
- Rated head (generation): 412 ft
- Flow capacity: 28,000 cfs pumping; 32,000 cfs generating

- Primary fish issue(s): Entrainment of fish during pumpback operations, including resident, anadromous, and catadromous species
- Fish protection measures: No specific measures have been implemented to reduce entrainment
- Effectiveness: N/A
References

Northfield Mountain study reports and documents (current relicensing activity):
http://www.northfieldrelicensing.com/NorthfieldRelicensing/Lists/Documents/AllItems1.aspx

Muddy Run study reports and documents (current relicensing activity):
Summary

• Introduction: Pumped Storage and Renewable Energy (Ron Grady, HDR)
• Generating Equipment (Dr. Juliusz Kirejczyk, HDR)
• The Licensing Process (Pat Weslowski, Louis Berger)
• Pumped Storage Hydraulics (Andy Johansson, Alden)
• Fish Protection Considerations (Steve Amaral, Alden)
Questions

Please use the Q&A tab in LiveMeeting

Ron Grady
Juliusz Kirejczyk
Pat Weslowski
Andy Johansson
Steve Amaral

David.Grady@hdrinc.com
Juliusz.Kirejczyk@hdrinc.com
PWeslowski@louisberger.com
ajohansson@aldenlab.com
amaral@aldenlab.com